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ABSTRACT 

 

In this paper, we obtained some spherically stellar configurations that represent new models of dark energy stars 

specifying particular forms for gravitational potential and the electric field intensity that allow solving the Einstein-

Maxwell field equations. We have chosen the metric potential proposed by Finch and Skea (1989) with the equation of 

state such as pr = ωρ, where pr is the radial pressure, ρ is the dark energy density, and ω is the dark energy parameter. 

We found that the radial pressure, anisotropy factor, energy density, metric coefficients, mass function, charge density 

are regular and well behaved in the stellar interior but the causality conditions of strong energy are not satisfied. These 

models have great application in physics and cosmology due to the fact that several independent observations indicate 

that the universe is in a phase of accelerated expansion which can be explained by the presence of dark energy that has 

not been detected. 
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INTRODUCTION  

 

Recent observational evidence as measurements of 

supernovas of type Ia and microwave background 

radiation suggest an accelerated expansion of the universe 

(Sushkov, 2005) and the explanation for this cosmological 

behavior requires assumption that a considerable part of 

the universe consists of a hypothetical dark energy with a 

negative pressure component (Lobo, 2005), which is a 

cosmic fluid parameterized by an equation of state ω = 

p/ρ < –1/3, where p is the spatially homogeneous pressure 

and ρ is the dark energy density (Sushkov, 2005; Lobo, 

2005, 2006; Bibi et al., 2016). The range for which ω < –

1 has been denoted as phantom energy and possesses 

peculiar properties such as negative temperatures, and the 

energy density increases to infinity in a finite time, 

resulting in a big rip (Lobo, 2005, 2006; Bibi et al., 2016). 

It also provides a natural scenario for the existence of 

exotic geometries such as wormholes (Malaver, 2013a; 

Morris and Thorne, 1988; Visser, 1995). 

 

The notion of dark energy is that of a homogeneously 

distributed cosmic fluid and that when extended to 

inhomogeneous spherically symmetric spacetimes, the 

pressure appearing in the equation of state shows a 

negative radial pressure, and the tangential pressure must 

be determined by applying the field equations (Lobo, 

2005, 2006). Lobo (2006) explored several 

configurations, by imposing specific choices for the mass 

function and studied the dynamical stability of these 

models by applying the general stability formalism 

developed by Lobo and Crawford (2005). Another study 

Chan et al. (2009) have proposed that the mass function is 

a natural consequence of the Einstein´s field equations 

and hence can be a core with a homogeneous energy 

density, described by the Lobo´s first solution (Lobo, 

2006). Malaver and Esculpi (2013) presented a new 

model of dark energy star by imposing specific choice for 

the mass function that corresponds to an increase in 

energy density inside of the star. Bibi et al. (2016) 

obtained a new class of solutions of the Einstein-Maxwell 

field equations representing a model for dark energy stars 

with the equation of state pr = –ρ. Malaver et al. (2019) 

found a new family of solutions to the Einstein-Maxwell 

system considering a particular form of the gravitational 

potential Z(x) and the electric field intensity with a linear 

equation of state that represents a model of dark energy 

star. Malaver and Kasmaei (2020a) generated a dark 

energy star model with a quadratic equation of state and a 

specific charge distribution. More recently, Malaver et al. 

(2022) obtained new solutions of Einstein’s field 

equations for dark energy stars within a Buchdahl 

spacetime by considering nonlinear electromagnetic field. 

According to Chan et al. (2009), the denomination of dark 

energy is applied to fluids which violate only the strong 

energy condition (SEC) given by ρ + pr + 2pt ≥ 0 where ρ 

is the energy density, pr and pt are the radial pressure and 

the tangential pressure, respectively. 

_____________________________________________________________________ 
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Recently, astronomical observations of compact objects 

have allowed new findings of neutron stars and strange 

stars that adjust to the exact solutions of the 4-D Einstein 

field equations; data on mass maximum, redshift and 

luminosity are some of the most relevant characteristics 

for verifying the physical requirements of these models 

(Bhar and Govender, 2019). A great number of exact 

models from the Einstein-Maxwell field equations have 

been generated by Gupta and Maurya (2011), Kiess 

(2012), Takisa and Maharaj (2013), Malaver and Kasmaei 

(2020b), Malaver (2017, 2018a), Ivanov (2002), and 

Sunzu et al. (2014). In the development of these models, 

several forms of equations of state can be considered 

(Sunzu, 2018). Komathiraj and Maharaj (2007), Malaver 

(2016a), Bombaci (1997), Thirukkanesh and Maharaj 

(2008), Dey et al. (1998), and Usov (2004) assume linear 

equation of state for quark stars. Feroze and Siddiqui 

(2011) considered a quadratic equation of state for the 

matter distribution and specified particular forms for the 

gravitational potential and electric field intensity. Takisa 

and Maharaj (2013) obtained new exact solutions to the 

Einstein-Maxwell system of equations with a polytropic 

equation of state. Thirukkanesh and Ragel (2012) have 

obtained particular models of anisotropic fluids with 

polytropic equation of state which are consistent with the 

reported experimental observations. Malaver (2013b) 

generated new exact solutions to the Einstein-Maxwell 

system considering Van der Waals modified equation of 

state with polytropic exponent. Tello-Ortiz et al. (2020) 

found an anisotropic fluid sphere solution of the Einstein-

Maxwell field equations with a modified version of the 

Chaplyg in equation of state.  

 

The analysis of compact objects with anisotropic matter 

distribution is very important, because that the anisotropy 

plays a significant role in the studies of relativistic 

spheres of fluid (Esculpi et al., 2007; Cosenza et al., 

1982; Herrera, 1992; Herrera and Nuñez, 1989; Herrera et 

al., 1979, 1984; Malaver, 2014a, 2014b, 2016b, 2018b, 

2018c; Sunzu and Danford, 2017; Bowers and Liang, 

1974). Anisotropy is defined as Δ = pt – pr, where pr is the 

radial pressure and pt is the tangential pressure. The 

existence of solid core, presence of type 3A superfluid 

(Sokolov, 1980), magnetic field, phase transitions, a pion 

condensation, and electric field (Usov, 2004) are most 

important reasonable facts that explain the presence of 

tangential pressures within a star. Many astrophysical 

objects as X-ray pulsar, Her X-1, 4U1820-30, and 

SAXJ1804.4-3658 have anisotropic pressures. Bowers 

and Liang (1974) include in the equation of hydrostatic 

equilibrium the case of local anisotropy. Bhar et al. 

(2015) have studied the behavior of relativistic objects 

with locally anisotropic matter distribution considering 

the Tolman VII form for the gravitational potential with a 

linear relation between the energy density and the radial 

pressure. Malaver (2015, 2018d), Feroze and Siddiqui 

(2011, 2014), and Sunzu et al. (2014) obtained solutions 

of the Einstein-Maxwell field equations for charged 

spherically symmetric spacetime by assuming anisotropic 

pressure. A realistic stellar model based on an ansatz of 

Duorah and Ray, anew analytical stellar model in general 

relativity, and a model of a three-layered relativistic star 

has been advanced to address quantum gravity 

astrophysics (Finch and Skea, 1989; Durgapal and 

Bannerji, 1983; Lighuda et al., 2021). Recently, Malaver 

and Iyer (2022) have found analytical Equation of State 

models with modified Chaplygin (exotic gas that allows 

supersymmetric generalization, and free Tachyons with 

dark energy fluid having viscous generalized hybrid 

hypothetical substance that satisfies an exotic equation of 

state in the following form: P = – A/ρα, where P is the 

pressure, ρ is the density, α = 1, and A is a positive 

constant). These may be used in the description of 

compact objects in absence of charge as well as for the 

study of internal structure of strange quark stars; a strange 

star model may be compatible with the compact star. 

Energetic stars are known to have vortex action fields to 

churn energy and matter (Iyer and Markoulakis, 2021; 

Iyer et al., 2020, 2022; Iyer, 2022; Sedrakian and Cordes, 

1999). Vortex action mechanism has been modeled by 

breakthrough formalism examining quantum fields point 

model algorithmically gaging to electromagnetic fields 

provided stringmetrics that are associated quantum to 

mesoscopic to astrophysics (Iyer and Markoulakis, 2021; 

Iyer et al., 2020, 2022; Iyer, 2022). In these theoretical 

investigations, quantum critical signal/noise density 

matrix values may give insight to analyze physical 

features associating the matter, radial pressure, density, 

anisotropy, gravitational potential, and energy density 

Schwarzschild-Einstein-Maxwell metrics. 

 

The aim of this paper is to generate new class of solutions 

which represents a potential model of dark energy stars 

whose equation of state is pr = ωρ with anisotropic matter 

quantifiable distribution, specifying forms for the 

gravitational potential and the electric field intensity. We 

have used the ansatz proposed by Finch and Skea (1989). 

The systems of field equations with their derivations 

computations to obtain analytic solutions have been 

extensively detailed here to verify which are physically 

acceptable. We assume that the denomination of dark 

energy is applicable to fluids which violate the strong 

energy condition (Chan et al., 2009). Organization of this 

article is as follows. In the following Section, we present 

Einstein´s field equations. In the third Section, we make a 

particular choice of gravitational potential Z(x) that allows 

solving the field equations and we have obtained new 

models for dark energy stars consistent alone of dark 

matter. In the fourth Section, a physical analysis of the 

new solutions is performed. In the final Section, we 

conclude. 
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Einstein-Maxwell Field Equations 

We consider a spherically symmetric, static, and 

homogeneous spacetime. In the Schwarzschild 

coordinates, the metric is given by  

 

)θdφ+(dθr+dre+dte=ds 2(r)2(r)2 22222λ2 sin  
(1) 

 

where v(r) and λ(r) are two arbitrary functions.  

 

The Einstein field equations for the charged anisotropic 

matter are given by  
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where ρ is the energy density, pr is the radial pressure, E 

is electric field intensity, pt is the tangential pressure, and 

primes denote differentiations with respect to r. Using the 

transformations, x = cr2, Z(x) = e–2λ(r) and A2y2(x) = e2v(r) 

with the arbitrary constants A and c > 0, suggested by 

Durgapal and Bannerji (1983), the Einstein field 

equations can be written as follows:  
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where σ is the charge density, Δ = pt – pr is the anisotropic 

factor, and dots denote differentiation with respect to x. 

With the transformations of (Durgapal and Bannerji, 

1983), the mass within the radius r of the sphere takes the 

following form:  
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The interior metric (1) with the charged matter 

distribution should match the exterior spacetime described 

by the following Reissner-Nordstrom metric:  
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(13) 

 

where the total mass and the total charge of the star are 

denoted by M and q2, respectively. The junction 

conditions at the stellar surface are obtained by matching 

the first and the second fundamental forms for the interior 

metric (1) and the exterior metric (14).  

 

In this paper, we assume the following equation of state:  

 

=pr  
(14) 

 

where ω is the dark energy parameter. 

 

A New Class of Models 

In order to solve the Einstein field equations, we have 

chosen specific forms for the gravitational potential Z(x) 

and the electrical field intensity E. Following Finch and 

Skea (1989) and Lighuda et al. (2021), we have taken the 

following forms, respectively:  
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where a is a real constant. The metric potential is regular 

at the origin and well behaved in the interior of the 

sphere. The electric field is finite at the center of the star 

and remains continuous in the interior. 

 

Substituting (15) and (16) in (7), we obtain:  
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Replacing (17) in (14), we have the following expression 

for the radial pressure: 
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Using (17) in (12), the expression of the mass function is 
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With (15) and (16) in (11), the charge density is 
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With (15), (16) and (17), equation (8) becomes 
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Integrating (21), we obtain  
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where A = (ω + 1)/8 and B = ω/2.  

 

The metric functions can be written as 
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The anisotropy factor ∆ is given by  
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Conditions of  Physical Acceptability  

For a model to be physically acceptable, the following 

conditions should be satisfied (Bibi et al., 2016; Malaver, 

2014b):  

(i) The metric potentials e2λ and e2v assume finite values 

throughout the stellar interior and are singularity-free at 

the center r = 0.  

(ii) The energy density ρ should be positive and a 

decreasing function inside the star. 

(iii) The radial pressure also should be positive and a 

decreasing function of radial parameter but for negative 

pressure this condition is not satisfied.   

(iv) The density gradient dρ/dr <= 0 for 0 ≤ r ≤ R.  

(v) The anisotropy is zero at the center r = 0, i.e. Δ(r = 0) 

= 0.     

(vi) Any physically acceptable model must satisfy the 

causality condition, that is, for the radial sound speed 

2 r
sr

dp
v

d
 , we should have 

20 1srv   but the dark 

energy case this condition nor is it satisfied.  

(vii) The consideration of dark energy is applicable only 

to fluids that violate the strong 

energy condition. 

(viii) The charged interior solution should be matched 

with the Reissner-Nordström exterior solution, for which 

the metric is given by equation (13).  

 

Conditions (ii) and (iv) imply that the energy density must 

reach a maximum at the center and decreasing towards 

the surface of the sphere. 

 

Physical Analysis of the New Models 

For the new solutions, metric potentials e2λ and e2v have 

finite values and remain positive throughout the stellar 

interior. At the center 
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possible to verify that the gravitational potentials are 

regular at the center.  

 

The energy density is positive and well behaved between 

the center and the surface of the star. In the center 

acr 3)0(   and acrpr 3)0(  . Therefore, the 

energy density will be nonnegative in r = 0 and 
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( 0)rp r   < 0. In the surface of the star r = R, we have 
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For the density gradient inside the stellar interior, we 
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On the boundary r = R, the solution must match the 

Reissner-Nordström exterior spacetime as:  
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Then for the matching conditions, we obtain:   
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In Figures 1, 2, 3, 4, and 5, the dependence of e2λ, ρ, 

dρ/dr, σ2, and M(r) with the radial coordinate are shown. 

In all the cases, it has been considered that R = 1.8 [km], a 

= 0.02, c = 1. 

 

 
Fig. 1. The metric function e2λ versus the radial coordinate 

with a = 0.02 and c = 1.  

 
Fig. 2. The energy density versus the radial coordinate 

with a = 0.02 and c = 1.  

 

 
Fig. 3. The density gradient versus the radial parameter 

with a = 0.02 and c = 1.  

 

In Figure 1, the metric potential e2λ is a continuously 

growing function inside the star. The energy density 

remains positive, continuous and is monotonically 

decreasing function throughout the stellar interior as 

noted in Figure 2. The radial variation of energy density 

gradient has been shown in Figure 3, in which it is 

observed that dρ/dr < 0. In Figure 4, the charge density is 

a continuously decreasing function, reaches a maximum 

and then decreases inside the star. In Figure 5, the mass 

function is continuous, increasing, takes finite values and 

well behaved in the stellar interior.  
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Fig. 4. The charge density versus the radial parameter 

with a = 0.02 and c = 1.  

 

 
Fig. 5. The mass function versus the radial coordinate 

with a = 0.02 and c = 1.  

 

Figures 6, 7, 8, and 9 show the dependence of e2v, pr, 

anisotropy Δ, and strong energy condition (SEC), 

respectively, with the radial parameter for different values 

of ω. In all the cases, it has been considered R = 1.8 [km], 

a = 0.02, and c = 1.  

 

In Figure 6, the metric potential e2v is continuous, well 

behaved and has a slight increase with an increase in the 

values of ω. The radial pressure is negative and not a 

decreasing function of the radial parameter, but takes 

lower values when ω is increased as shown in Figure 7. 

The anisotropic factor is plotted in Figure 8 and it shows 

that vanishes at the centre of the star, i.e. Δ(r = 0) = 0. We 

can also note that Δ admits lower values with a growth of 

ω. Figure 9 shows that the strong energy condition is 

violated for all the ω values considered.  

 

 

 
Fig. 6. The metric function e2v versus the radial coordinate 

for ω = –1 (solid line); ω = –0.75 (long-dashed line): ω = 

–0.5 (dash-doted line). In all the cases, a = 0.02 and c = 1.  

 

 

 
Fig. 7. The radial pressure versus the radial coordinate for 

ω = –1 (solid line); ω = –0.75 (long-dashed line): ω = –

0.5 (dash-doted line). In all the cases, we have a = 0.02 

and c = 1. 
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Fig. 8. The anisotropy versus the radial coordinate for ω = 

–1 (solid line); ω = –0.75 (long-dashed line): ω = –0.5 

(dash-doted line). In all the cases, a = 0.02 and c = 1. 

 

 
Fig. 9. The SEC versus the radial coordinate for ω = –1 

(solid line); ω = –0.75 (long-dashed line): ω = –0.5 (dash-

doted line). In all the cases, a = 0.02 and c = 1. 

 

CONCLUSION  

In this paper, we have found new class of solutions which 

represents a model for dark energy stars with a 

gravitational potential proposed for Finch and Skea 

(1989). The radial pressure, energy density, anisotropy, 

mass function, charge density and all the coefficients of 

the metric behaves well inside the stellar interior and are 

free of singularities. In this model the consideration of 

dark energy star is applied only to the cases where 

parameter ω not satisfy the strong energy condition. The 

obtained solutions match smoothly with the exterior of the 

Reissner-Nordström spacetime at the boundary r = R 

because matter variables and the gravitational potentials 

of this work are consistent with the physical analysis of 

these stars. The new models satisfy all the requirements 

for a compact negative energy stellar object and may be 

used to model relativistic configurations in different 

astrophysical scenes. 

 

Quantum astrophysical signal/noise density matrix with 

prime factorized magic square symmetry mechanistic 

processes have powerful methodology to characterize 

charged dark energy Star systems that essentially possess 

characteristics of Finch-Skea spacetime within vacuum 

multiverse. We believe that critical quantum signal/noise 

density matrix values may provide astrophysics physical 

features associating the matter, radial pressure, density, 

anisotropy, gravitational potential, and energy density 

metrics. Physics conjectures are underway proceeding to 

metrically gaging with unitarization to achieve 

dimensionless quantities with analytical physical 

solutions observationally. Gage discontinuity dissipative 

physics, then will get modified to come up with 

observables that are measurable to resolve questions of 

mass-function, fields, dark matter, as well as singularity; 

many inconsistencies will also get resolved by quantum 

astrophysical transforms. 
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